SADLER MATHEMATICS METHODS UNIT 2

WORKED SOLUTIONS

Chapter 3 Sequences

Exercise 3A

Question 1

 $T_3 = 18$

Question 2

 $T_5 = 26$

Question 3

 $T_3 + T_5$ = 18 + 26 = 44

Question 4

 $T_8 = 38$

Question 5

 $3T_2$ = 3×14 = 42

 $2T_3$ = 2×18 = 36

Question 7

 $3(T_1 + T_2)$ = 3(10 + 14) = 72

Question 8

 $3(T_1 + T_2)$ = 3×10+14 = 44

Question 9

 $T_{9} = 42$

Question 10

 $T_{10} = 46$

Question 11

 $(T_3)^2$ = 18² = 324

 $(T_2)^3$ = 14³ = 2744

Question 13

 $T_2 = 8$

Question 14

 $T_{6} = 20$

Question 15

 $T_2 + T_6$ = 8 + 20 = 28

Question 16

 $T_8 = 26$

Question 17

 $T_{9} = 29$

Question 18

 $T_3 + 2T_1$ = 11 + 2 × 5 = 21

 $T_1 + 2T_3$ $= 5 + 2 \times 11$ = 27

Question 20

 $(T_3 - T_2)^2$ = $(11 - 8)^2$ = 9

Question 21

 $T_5 = 162$

Question 22

 $3T_2$ = 3×6 = 18

Question 23

 $T_1 + T_2 + T_3$ = 2 + 6 + 18 = 26

Question 24

 $T_8 = 1458 \times 3$ = 4374

 $C_3 = 27$

Question 26

 $C_6 = 6^3$ = 216

Question 27

 $C_7 = 343$

Question 28

 $C_6 - C_5$ = 216 - 125 = 91

Question 29

 $L_3 = L_1 + L_2$ = 1 + 3= 4

Question 30

 $L_4 = L_2 + L_3$ = 3 + 4= 7

 $L_4^2 = 7^2 = 49$

Question 32

$$\begin{split} L_5 &= 4 + 7 = 11 \\ L_6 &= 7 + 11 = 18 \\ L_7 &= 11 + 18 = 29 \\ L_8 &= 18 + 29 = 47 \\ 2L_8 &= 2 \times 47 \\ &= 94 \end{split}$$

 $T_1 = 6, T_{n+1} = T_n + 4$

Question 2

 $T_1 = 28, T_{n+1} = T_n - 2$

Question 3

 $T_1 = 5,$ $T_{n+1} = T_n + 10$

Question 4

 $T_1 = 7.5, \qquad T_{n+1} = T_n + 2.5$

Question 5

 $T_1 = 100, \qquad T_{n+1} = T_n - 11$

Question 6

 $T_1 = 6,$ $T_n = T_{n-1} \times 2 = 2T_{n-1}$

Question 7

 $T_1 = 0.375, \qquad T_n = 4T_{n-1}$

 $T_1 = 384, \qquad T_n = 0.25T_{n-1}$

Question 9

 $T_1 = 50, T_n = 3T_{n-1}$

Question 10

 $T_1 = 1000, \qquad T_n = 1.1T_{n-1}$

Question 11

Neither

Question 12

Geometric (multiplication by 5 to get next term)

Question 13

Arithmetic (addition of 1.5 to get next term)

Question 14

Arithmetic (subtraction of 11 to get next term)

Question 15

Neither

 $\frac{160}{128} = 1.25$ $\frac{200}{160} = 1.25$ $\frac{250}{200} = 1.25 \text{ and so on}$ Geometric

Question 17

Geometric ($3T_n$ indicates multiplication by 3 to get next term)

Question 18

Arithmetic ($T_n + 6$ indicates addition of 6 to get next term)

Question 19

Neither

Question 20

Neither

Question 21

Arithmetic $(T_n - 8 \text{ indicates subtraction of } 8 \text{ to get next term})$

Question 22

Geometric ($0.5T_n$ indicates multiplication by 0.5 to get next term)

 $T_1 = 8$, $T_2 = 11$, $T_3 = 14$, $T_4 = 17$ $T_{n+1} = T_n + 3$

Question 24

 $T_1 = 100, \ T_2 = 97, \ T_3 = 94, \ T_4 = 91$ $T_{n+1} = T_n - 3$

Question 25

 $T_1 = 11, \ T_2 = 22, \ T_3 = 44, \ T_4 = 88$ $T_{n+1} = 2T_n$

Question 26

 $T_1 = 2048, \ T_2 = 1024, \ T_3 = 512, \ T_4 = 256$ $T_{n+1} = 0.5T_n$

Question 27

a 8400 - 7600 = 7600 - 6800 = 6800 - 600 = 800

Each term is 800 more than previous

b $N_{n+1} = N_n + 800$

b

a Geometric as adding 10% is the same as multiplying by 1.1

$$T_1 = 500$$

$$T_2 = 500 + 10\% \times 500 = 550$$

$$T_3 = 550 + 10\% \times 550 = 605$$

$$T_4 = 605 + 10\% \times 605 = 665.5$$

Question 29

a Geometric as adding 25% is the same as multiplying by 1.25

b $T_1 = 1000$ $T_2 = 1000 + 25\% \times 1000 = 1250$ $T_3 = 1250 + 25\% \times 1250 = 1562.5$ $T_4 = 1562.5 + 25\% \times 1562.5 = 1953.125$

Question 30

a Geometric as subtracting 10% is the same as multiplying by 0.9

b $T_1 = 24000$

$$\begin{split} T_2 &= 24000 - 10\% \times 24000 = 21600 \\ T_3 &= 21600 - 10\% \times 21600 = 19440 \\ T_4 &= 19440 - 10\% \times 19440 = 17496 \end{split}$$

а

n	1	2	3	4	5
T_n	3	8	13	18	23

$$T_1 = 3, T_{n+1} = T_n + 5$$

b Arithmetic

Question 32

а

n	1	2	3	4	5
T_n	1.5	3	6	12	24

$$T_1 = 1.5, \qquad T_{n+1} = 2T_n$$

b Geometric

Question 33

а

n	1	2	3	4	5
T_n	4	9	16	25	36

b Neither

- **a** 1296, 1392, 1488, 1584 after 1, 2, 3, 4 years respectively
- **b** Arithmetic as there is a constant difference of 96
- **c** $T_1 = 1200, \quad T_{n+1} = T_n + 96$

Question 35

 $T_1 = 4$, $T_2 = 5$, $T_3 = 6$, $T_4 = 7$ $T_1 = 4$ $T_{n+1} = T_n + 1$

Question 36

 $T_1 = 45\ 000, \ T_2 = 46\ 500, \ T_3 = 48\ 000$ $T_1 = 45\ 000 \qquad T_{n+1} = T_n + 1500$

Question 37

$T_1 = 68\ 000$	(2014)
$T_2 = 68\ 000 \times 1.05 = 71\ 400$	(2015)
$T_3 = 71\ 400 \times 1.05 = 74\ 970$	(2016)
$T_4 = 74\ 970 \times 1.05 = 78\ 718.50$	(2017)
$T_1 = 68\ 000$ $T_{n+1} = 1.05T_n$	

$T_1 = 1500$		(2014)
$T_2 = 1500 \times 1.5$.08 = 1620	(2015)
$T_3 = 1620 \times 1.$	08 = 1749.6	(2016)
$T_1 = 1500$	$T_{n+1} = 1.08T_n$	

 $T_1 = 36\ 000$ $T_2 = 36\ 000 \times 0.85 = 30\ 600$ $T_3 = 30\ 600 \times 0.85 = 26\ 010$ $T_1 = 36\ 000$ $T_{n+1} = 0.85T_n$

Exercise 3C

Question 1

a = 11, d = 5 $T_{100} = a + 99d$ $= 11 + 99 \times 5$ = 506

Question 2

$$a = -8, d = 3$$

 $T_{100} = a + 99d$
 $= -8 + 99 \times 3$
 $= 289$

Question 3

$$T_1 = a = 23, d = 8$$

 $T_{100} = a + 99d$
 $= 23 + 99 \times 8$
 $= 815$

Question 4

 $T_1 = a = 78, d = -2$ $T_{100} = a + 99d$ $= 78 + 99 \times (-2)$ = -120

Question 5

$$T_1 = a = 5, r = 2$$

 $T_{25} = ar^{24}$
 $= 5 \times 2^{24}$

© Cengage Learning Australia Pty Ltd 2018

$$T_1 = a = 1.5, r = 4$$

 $T_{25} = ar^{24}$
 $= 1.5 \times 4^{24}$

Question 7

 $T_1 = a = 8, r = 3$ $T_{25} = ar^{24}$ $= 8 \times 3^{24}$

Question 8

 $T_1 = a = 11, r = 2$ $T_{25} = ar^{24}$ $= 11 \times 2^{24}$

Question 9

 $T_8 = 223$

Question 10

 $T_{20} = 3\ 495\ 265$

Question 11

 $T_{19} = 774\,840\,977$

 $T_{45} = 6$

Question 13

Day	1	2	3	4	5
Items	48	51	54	57	60

 $T_n = 48, T_{n+1} = T_n + 3$ By classpad or $T_{15} = a + 14d$ $= 48 + 14 \times 3$ = 90

She completes 90 items of day 15.

Question 14

$$T_n = a + (n-1)d$$
$$= a + dn - d$$
$$= dn + (a - d)$$

 T_n produces a sequence which increases by d for each unit increase in the n-value, which is by definition, the gradient.

When n = 0, $T_n = a - d \Rightarrow$ co-ordinates are(0, a - d)

 $T_n = ar^{n-1}$

Exponential relationships are of the form $y = ka^x$ which is similar to our T_n formula.

$$T_n = ar^n$$

= $a \times r^n \times r^{-1}$
= $a \times r^n \times \frac{1}{r}$
= $\frac{a}{r} \times r^n$

When $n = 0, T_n = \frac{a}{r}$ co-ordinates are $(0, \frac{a}{r})$

Question 16

As $n \to \infty$, the *nd* term in the expression a + (n-1)d will dominate. Thus as $n \to \infty$, T_n will become increasingly large and positive if d > 0 and increasingly large and negative if d < 0.

Question 17

As $n \to \infty$, the n in the expression ar^{n-1} will dominate. Thus as $n \to \infty$, if $r > 1, T_n$ will become increasingly large, either positively or negatively dependent on the sign of the constant *a*.

If r < -1, T_n will become increasingly large, alternating between large negative and large positive.

If -1 < r < 1, T_n will become smaller and smaller, maintaining the sign of the constant *a* if *r* is positive and alternating between small positive and small negative if *r* is negative.

$$a = 8, d = 3$$

$$T_1 = 8, T_2 = 11, T_3 = 14, T_4 = 17$$

$$T_{50} = a + 49d$$

$$= 8 + 49 \times 3$$

$$= 155$$

$$T_{100} = a + 99d$$

$$= 8 + 99 \times 3$$

$$= 305$$

Question 19

$$a = 100, d = -3$$

$$T_{1} = 100, T_{2} = 97, T_{3} = 94, T_{4} = 91$$

$$T_{50} = a + 49d$$

$$= 100 + 49 \times (-3)$$

$$= -47$$

$$T_{100} = a + 99d$$

$$= 100 + 99 \times (-3)$$

$$= -197$$

$$a = 11, r = 2$$

$$T_{1} = 11, T_{2} = 22, T_{3} = 44, T_{4} = 88$$

$$T_{15} = ar^{14}$$

$$= 11 \times 2^{14}$$

$$= 180 224$$

$$T_{25} = ar^{24}$$

$$= 11 \times 2^{24}$$

$$= 184 549 376$$

$$a = 2048, r = 0.5$$

 $T_1 = 2048, T_2 = 1024, T_3 = 512, T_4 = 256$
 $T_{16} = ar^{15}$
 $= 2048 \times (0.5)^{15}$
 $= 0.0625$

Question 22

a
$$T_n = a + (n-1)d$$

= 9 + 6(n-1)
= 9 + 6n - 6
= 6n + 3
b $T_n = a + (n-1)d$
= 7 + 1.5(n-1)

$$= 7 + 1.5(n - 1)$$

= 7 + 1.5n - 1.5
= 1.5n + 5.5

a
$$T_n = ar^{n-1}$$
$$= 3 \times 2^{n-1}$$

b
$$T_n = ar^{n-1}$$

= 100 × (1.1)ⁿ⁻¹

a
$$a = 2, d = 7$$

 $T_{123} = a + 122d$
 $= 2 + 122 \times 7$
 $= 856$

- **b** $T_{500} = a + 499d$ = 2 + 499 × 7 = 3495
- **c** By classpad, solve $1\,000\,000 < 2 + 7(n-1)$

or 999 998 < 7(n-1) 142 856 $\frac{6}{7} < n-1$ 142 857 $\frac{6}{7} < n$

The 142 858th term

Question 25

a
$$a = 0.0026, r = \frac{0.013}{0.0026} = 5$$

 $T_{12} = ar^{11}$
 $= 0.0026 \times 5^{11}$
 $= 126\,953.125$

b By classpad, solve $0.0026 \times 5^{n-1} > 1\,000\,000$ n-1 > 12.28n > 13.28

The 14th term

a
$$a = 20\ 000\ 000, r = \frac{15}{20} = 0.75$$
$$T_{12} = ar^{11}$$
$$= 20\ 000\ 000 \times 0.75^{11}$$
$$= 844\ 700\ (\text{to nearest 100})$$

b By classpad, solve $20\ 000\ 000 \times (0.75)^{n-1} < 1$ n-1 > 58.4n > 59.4

The 60th term

Question 27

 $T_n = n^3$ $T_1 = 1, T_2 = 8, T_3 = 27, T_4 = 64$ Neither

$$T_{19} = a + 18d = 61$$

$$T_{41} = a + 40d = 127$$

$$T_{41} - T_{19} = 22d = 66$$

$$d = 3$$

a

$$T_{20} = T_{19} + 3$$

$$= 61 + 3$$

$$= 64$$

b

$$a + 18 \times 3 = 61$$

$$a + 54 = 61$$

$$a = 7$$

$$T_{50} = a + 49d = 1853$$

$$T_{70} = a + 69d = 1793$$

$$T_{70} - T_{50} = -20d = 60$$

$$d = -3$$
a

$$T_{51} = T_{50} - 3$$

$$= 1853 - 3$$

$$= 1850$$
b

$$a + 49 \times (-3) = 1853$$

$$a - 147 = 1853$$

$$a = 2000$$

Question 30

$$T_{10} = ar^{9} = 98\ 415$$

$$T_{13} = ar^{12} = 2\ 657\ 205$$

$$\frac{T_{13}}{T_{10}} = \frac{2\ 657\ 205}{98\ 415}$$

$$\frac{ar^{12}}{ar^{9}} = 27$$

$$r^{3} = 27$$

$$r = 3$$
a

$$T_{14} = 2\ 657\ 205 \times 3$$

$$= 7\ 971\ 615$$
b

$$T_{10} = a(3)^{9} = 98\ 415$$

$$a = \frac{98\ 415}{3^{9}}$$

= 5

23

$$T_{7} = ar^{6} = 28\ 672$$

$$T_{9} = ar^{8} = 458\ 752$$

$$\frac{T_{9}}{T_{7}} = \frac{458\ 752}{28\ 672}$$

$$\frac{ar^{8}}{ar^{6}} = 16$$

$$r^{2} = 16$$

$$r = \pm 4$$
Given $r < 0, r = -4$

a
$$T_{10} = 458752 \times (-4)$$

= -1835008

b
$$T_{10} = a(-4)^6 = 28\ 672$$

 $a = \frac{28\ 672}{(-4)^6}$
 $= 7$

Question 32

 $A = 4000 \times 1.08^{t}$ t years $A = 4000 \times 1.08^{10}$ = \$8635.70

Recursive formula: $T_1 = 4000$, $T_{n+1} = 1.08T_n$

 $V = 600\ 000 \times 1.056^{t}$ t years $600\ 000 \times 1.056^{t} = 2\ 000\ 000$ By classpad, t = 22.1

In the 23rd year.

Recursive formula: $T_1 = 600\ 000$, $T_{n+1} = 1.056T_n$

Question 34

 $T_1 = 4520$ $T_{n+1} = 1.08T_n + 200$ $T_{10} = \$11533.01$

Question 35

 $T_1 = 4120$ $T_{n+1} = 1.08T_n - 200$ $T_{10} = 5738.39

Miscellaneous exercise three

Question 1

- **a** Quadratic
- **b** Exponential
- **c** Linear
- **d** Quadratic
- **e** Reciprocal
- f Linear
- **g** Linear
- **h** Quadratic
- i Quadratic
- j Reciprocal
- **k** Linear
- **I** Exponential

- **a** *x* ≈ 2.3
- **b** $x \approx 2.6$
- **c** *x* ≈ 1.4

 $8 = 2^{3}$ а n = 3**b** $\frac{1}{8} = \frac{1}{2^3} = 2^{-3}$ n = -3**c** $\frac{1}{2} = 2^{-1}$ n = -1**d** $\sqrt{2} = 2^{0.5}$ n = 0.5**e** $1 = 2^0$ n = 0 $\sqrt{8} = (2^3)^{0.5} = 2^{1.5}$ f *n* = 1.5 $\frac{1}{64} = \frac{1}{2^6} = 2^{-6}$ g *n* = –6 $2\sqrt{2} = 2^1 \times 2^{0.5} = 2^{1.5}$ h

n = 1.5

© Cengage Learning Australia Pty Ltd 2018

$$T_{2} = ar = 6$$

$$T_{5} = ar^{4} = 20.25$$

$$\frac{T_{5}}{T_{2}} = \frac{20.25}{6}$$

$$\frac{ar^{4}}{ar} = 3.375$$

$$r^{3} = 3.375$$

$$r = 1.5$$

$$T_{2} = a(1.5) = 6$$

$$a = \frac{6}{1.5}$$

$$= 4$$

a
$$T_n = ar^{n-1}$$

= 4(1.5)ⁿ⁻¹

b

$$T_n = 4(1.5)^{n-1}$$

= 4×(1.5)ⁿ×(1.5)⁻¹
= 4×(1.5)ⁿ× $\left(\frac{3}{2}\right)^{-1}$
= 4× $\frac{2}{3}$ ×1.5ⁿ
= $\frac{8}{3}$ ×1.5ⁿ

$$a = 1, r = \sqrt{3}$$

 $T_{11} = ar^{10}$
 $= 1 \times (\sqrt{3})^{10}$
 $= 243$

a
$$4^{x} = 64$$

 $= 4^{3}$
 $x = 3$
b $4^{x} = \frac{1}{64}$
 $= \frac{1}{4^{3}}$
 $= 4^{-3}$
 $x = -3$
c $4^{x} = \frac{1}{4}$
 $= 4^{-1}$
 $x = -1$
d $64^{0.5} = x$
 $\sqrt{64} = x$
 $x = 8$
e $x^{2} = 64$
 $x = \pm 8$
f $4^{8} = 4^{x} \times 4^{-3}$
 $= 4^{x-3}$
 $8 = x - 3$
 $x = 11$

a
$$16^{0.5}$$

 $= \sqrt{16}$
 $= 4$
b $16^{\frac{3}{2}}$
 $= (2^4)^{\frac{3}{2}}$
 $= 2^6$
 $= 64$
c $27^{\frac{2}{3}}$
 $= (3^3)^{\frac{2}{3}}$
 $= 3^2$
 $= 9$
d $25^{-0.5}$
 $= (5^2)^{-0.5}$
 $= 5^{-1}$
 $= \frac{1}{5}$
e $\left(\frac{1}{4}\right)^{-0.5}$
 $= (2^{-2})^{-0.5}$
 $= 2^1$

= 2

© Cengage Learning Australia Pty Ltd 2018

а	$T_{1+1} = (-1)^1 T_1$	
	$= -1 \times 4$	
	=-4	
b	$T_3 = T_{2+1}$	
	$=(-1)^2 T_2$	
	$=1 \times (-4)$	
	=-4	
	$T_4 = T_{3+1}$	
	$=(-1)^{3}T_{3}$	
	$=(-1)_{\times}(-4)$	
	= 4	
	$T_5 = T_{4+1}$	
	$=(-1)^{4}T_{4}$	
	$=1 \times 4$	
	=4	

c Neither as 4, -4, -4, 4, 4 has no common ratio or difference

a
$$T_{1+1} = (-1)^{1}2T_{1}$$

 $= -1 \times 2 \times 1$
 $= -2$
b $T_{3} = T_{2+1}$
 $= (-1)^{2}2T_{2}$
 $= 1 \times 2 \times (-2)$
 $= -4$
 $T_{4} = T_{3+1}$
 $= (-1)^{3}2T_{3}$
 $= (-1) \times 2 \times (-4)$
 $= 8$
 $T_{5} = T_{4+1}$
 $= (-1)^{4}2T_{4}$
 $= 1 \times 2 \times 8$
 $= 16$

c Neither as 1, -2, -4, 8, 16 has no common ratio or difference

a
$$a = 5k + 3, d = 5 - k$$
$$T_{10} = a + 9d$$
$$= (5k + 3) + 9(5 - k)$$
$$= 5k + 3 + 45 - 9k$$
$$= 48 - 4k$$

b

$$T_{20} = a + 19d$$

$$= (5k + 3) + 19(5 - k)$$

$$= 5k + 3 + 95 - 19k$$

$$= 98 - 14k$$

$$98 - 14k = 91$$

$$14k = 7$$

$$k = 0.5$$

$$T_{21} = 91 + (5 - 0.5)$$

$$= 95.5$$

Question 11

 $a^{4+3} = a^7$

Question 12

 $12x^{2+1}y^{1+3} = 12x^3y^4$

Question 13

 $\frac{15a^3b}{10ab^3} = \frac{3a^2}{2b^2}$

Question 14

 $9a^2 \times 8a^6b^3$ $= 72a^8b^3$

 $\frac{9a^2}{8a^6b^3} = \frac{9}{8a^4b^3}$

Question 16

 $\frac{6 \times 8b}{a} = \frac{48b}{a}$

Question 17

$$\frac{2a^2a^3}{b\ b^4} = \frac{2a^5}{b^5}$$

Question 18

$$\frac{k^3(k^4+1)}{k^3} = k^4 + 1$$

Question 19

$$\frac{p^5(1-p^3)}{p^2} = p^3(1-p^3)$$

Question 20

 $\frac{5^{k} \times 5^{2}}{5^{k} \times 5^{-1}}$ $= 5^{2\times} \times 5^{1}$ $= 5^{3}$ = 125

$$\frac{5^{n} \times 5^{2} - 50}{5^{n} - 2}$$
$$= \frac{25(5^{n} - 2)}{5^{n} - 2}$$
$$= 25$$

Question 22

 $\frac{2^{n} \times 2^{3} + 8}{3 \times 2^{n} + 3}$ $= \frac{8(2^{n} + 1)}{3(2^{n} + 1)}$ $= \frac{8}{3}$